首页 | 期刊介绍 | 编委会 | 投稿指南 | 期刊订阅 | 广告合作 | 联系我们      
基于DE-SVM的船舶航迹预测模型
投稿时间:2019-02-27  修订日期:2019-05-06  点此下载全文
引用本文:刘娇,史国友,杨学钱,朱凯歌.基于DE-SVM的船舶航迹预测模型[J].上海海事大学学报,2020,41(1):34-39.
摘要点击次数: 1547
全文下载次数: 456
           
作者单位
刘娇 大连海事大学 a.航海学院;b.辽宁省航海安全保障重点实验室
史国友 大连海事大学 a.航海学院;b.辽宁省航海安全保障重点实验室
杨学钱 大连海事大学 a.航海学院;b.辽宁省航海安全保障重点实验室
朱凯歌 大连海事大学 a.航海学院;b.辽宁省航海安全保障重点实验室
基金项目:国家自然科学基金(51579025);辽宁省自然科学基金(20170540090)
中文摘要:为提高船舶航迹预测精度,解决准确建模难度大和神经网络易陷入局部最优的问题,考虑实时获取目标船AIS数据较少的特点,提出一种基于支持向量机(support vector machine, SVM)的航迹预测模型。选择AIS数据中的航速、航向和船舶经纬度作为样本特征变量;采用小波阈值去噪的方法处理训练数据;采用差分进化(differential evolution, DE)算法对模型内部参数寻优以提高模型收敛速度和预测精度。选取天津港实船某段航迹的AIS数据,比较基于DE SVM与基于BP神经网络的航迹预测模型的仿真结果。结果表明,基于DE SVM的航迹预测模型具有更高的预测精度,简单、可行、高效,且耗时少。
中文关键词:航迹预测  支持向量机(SVM)  差分进化(DE)算法  AIS  BP神经网络
 
Ship trajectory prediction model based on DE-SVM
Abstract:In order to improve the accuracy of ship trajectory prediction, and solve the problem that accurate modeling is difficult and the neural network is prone to fall into local optimum, considering the fact that the target ship AIS data acquired in real time are less, a ship trajectory prediction model based on support vector machine (SVM) is proposed. The ship speed, course, longitude and latitude in AIS data are selected as sample feature variables, and the wavelet threshold denoising method is adopted to process the training data. The differential evolution (DE) algorithm is used to optimize the internal parameters of the model to improve the convergence speed and prediction accuracy of the model. The AIS data of a certain section of ship trajectory in Tianjin Port is selected, and the simulation results using the ship trajectory prediction models based on DE SVM and BP neural network are compared. The results show that the ship trajectory prediction model based on DE SVM is of higher prediction accuracy, it is simple, feasible and efficient, and it takes less time.
keywords:ship trajectory prediction  support vector machine (SVM)  differential evolution (DE) algorithm  AIS  BP neural network
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第6274214位访问者
地址:上海浦东新区海港大道1550号中远图书馆B5楼512室 邮编:201306
联系电话:021-38284905 传真:021-38284916 E-mail:hyxb@shmtu.edu.cn
本系统由北京勤云科技发展有限公司设计  
沪ICP备11028865号-3