首页 | 期刊介绍 | 编委会 | 投稿指南 | 期刊订阅 | 广告合作 | 联系我们      
基于多种群遗传神经网络的船舶发电机故障诊断
投稿时间:2013-06-17  修订日期:2013-09-17  点此下载全文
引用本文:杨鸣,施伟锋.基于多种群遗传神经网络的船舶发电机故障诊断[J].上海海事大学学报,2013,34(4):18-22.
摘要点击次数: 899
全文下载次数: 333
     
作者单位
杨鸣 上海海事大学 物流工程学院
施伟锋 上海海事大学 物流工程学院
基金项目:上海市教育委员会科研创新重点项目(12ZZ155);高等学校博士学科点专项科研基金(20123121110003)
中文摘要:为及时发现船舶发电系统的早期故障,通过多种群遗传算法与反向传播(BackPropagation, BP)神经网络算法相结合,提出一种基于多种群遗传神经网络算法的船舶发电机故障诊断方法.利用该算法对实例进行故障诊断,结果证明该算法能有效克服BP神经网络收敛速度慢和易出现局部极小值的缺点.该算法有全局搜索能力强、优化速度快的特点,具有一定的应用前景.
中文关键词:故障诊断; 多种群遗传算法; 神经网络  船舶发电机
 
Fault diagnosis of ship generators based on multi-population genetic neural network
Abstract:To detect early faults of ship power systems timely, through the combination of the multi population genetic algorithm and the BackPropagation (BP) neural network algorithm, a fault diagnosis method for ship generators based on a multi population genetic neural network algorithm is proposed. The fault diagnosis for real examples is done by the algorithm. The results show that the algorithm can effectively overcome the weaknesses of BP neural network that has a slow convergence speed and is prone to a local minimum value. The algorithm is of strong global search capability and a rapid optimization speed, and is of certain application prospect.
keywords:fault diagnosis  multi population genetic algorithm  neural network  ship generator
查看全文  查看/发表评论  下载PDF阅读器
关闭

您是第6274082位访问者
地址:上海浦东新区海港大道1550号中远图书馆B5楼512室 邮编:201306
联系电话:021-38284905 传真:021-38284916 E-mail:hyxb@shmtu.edu.cn
本系统由北京勤云科技发展有限公司设计  
沪ICP备11028865号-3